Part Number Hot Search : 
S21531D XXXXXX 100CTF P6KE18CA EMC2301 LVR012S 1414C4 P3601MSH
Product Description
Full Text Search
 

To Download MAX5513EUA Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 19-3066; Rev 0; 1/04
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs
General Description
The MAX5512-MAX5515 are dual, 8-bit, ultra-lowpower, voltage-output, digital-to-analog converters (DACs) offering Rail-to-Rail(R) buffered voltage outputs. The DACs operate from a 1.8V to 5.5V supply and consume less than 5A, making the devices suitable for low-power and low-voltage applications. A shutdown mode reduces overall current, including the reference input current, to just 0.18A. The MAX5512-MAX5515 use a 3-wire serial interface that is compatible with SPITM, QSPITM, and MICROWIRETM. Upon power-up, the MAX5512-MAX5515 outputs are driven to zero scale, providing additional safety for applications that drive valves or for other transducers that need to be off during power-up. The zero-scale outputs enable glitch-free power-up. The MAX5512 accepts an external reference input and provides unity-gain outputs. The MAX5513 contains a precision internal reference and provides a buffered external reference output with unity-gain DAC outputs. The MAX5514 accepts an external reference input and provides force-sense outputs. The MAX5515 contains a precision internal reference and provides a buffered external reference output with force-sense DAC outputs. The MAX5514/MAX5515 are available in a 4mm x 4mm x 0.8mm, 12-pin, thin QFN package. The MAX5512/ MAX5513 are available in an 8-pin MAX package. All devices are guaranteed over the extended -40C to +85C temperature range. For 10-bit compatible devices, refer to the MAX5522- MAX5525 data sheet. For 12-bit compatible devices, refer to the MAX5532-MAX5535 data sheet.
Features
Ultra-Low 5A Supply Current Shutdown Mode Reduces Supply Current to 0.18A (max) Single +1.8V to +5.5V Supply Small 4mm x 4mm x 0.8mm Thin QFN Package Internal Reference Sources 8mA of Current (MAX5513/MAX5515) Flexible Force-Sense-Configured Rail-to-Rail Output Buffers Fast 16MHz, 3-Wire, SPI-/QSPI-/MICROWIRECompatible Serial Interface TTL- and CMOS-Compatible Digital Inputs with Hysteresis Glitch-Free Outputs During Power-Up
MAX5512-MAX5515
Ordering Information
PART MAX5512EUA MAX5513EUA MAX5514ETC MAX5515ETC TEMP RANGE -40C to +85C -40C to +85C -40C to +85C -40C to +85C PIN-PACKAGE 8 MAX 8 MAX 12 Thin QFN-EP* 12 Thin QFN-EP*
* EP = Exposed paddle (internally connected to GND).
Selector Guide
PART MAX5512EUA MAX5513EUA MAX5514ETC MAX5515ETC OUTPUTS Unity gain Unity gain Force sense Force sense REFERENCE External Internal External Internal TOP MARK -- -- AACI AACJ
Applications
Portable Battery-Powered Devices Instrumentation Automatic Trimming and Calibration in Factory or Field Programmable Voltage and Current Sources Industrial Process Control and Remote Industrial Devices Remote Data Conversion and Monitoring Chemical Sensor Cell Bias for Gas Monitors Programmable LCD Bias
Rail-to-Rail is a registered trademark of Nippon Motorola, Inc. SPI and QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp.
Pin Configurations
TOP VIEW
CS 1 SCLK 2 DIN 3 REFIN(MAX5512) 4 REFOUT(MAX5513) 8 OUTA
MAX5512 MAX5513
7 GND 6 VDD 5 OUTB
MAX Pin Configurations continued at end of data sheet. 1
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs MAX5512-MAX5515
ABSOLUTE MAXIMUM RATINGS
VDD to GND ..............................................................-0.3V to +6V OUTA, OUTB to GND .................................-0.3V to (VDD + 0.3V) FBA, FBB to GND .......................................-0.3V to (VDD + 0.3V) SCLK, DIN, CS to GND ..............................-0.3V to (VDD + 0.3V) REFIN, REFOUT to GND ............................-0.3V to (VDD + 0.3V) Continuous Power Dissipation (TA = +70C) 12-Pin Thin QFN (derate 16.9mW/C above +70C).....1349mW 8-Pin MAX (derate 5.9mW/C above +70C) .............471mW Operating Temperature Range ...........................-40C to +85C Storage Temperature Range .............................-65C to +150C Junction Temperature ......................................................+150C Lead Temperature (soldering, 10s) .................................+300C
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
ELECTRICAL CHARACTERISTICS
(VDD = +1.8V to +5.5V, OUT_ unloaded, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.)
PARAMETER Resolution Integral Nonlinearity (Note 1) SYMBOL N INL VDD = 5V, VREF = 4.096V VDD = 1.8V, VREF = 1.024V Guaranteed monotonic, VDD = 5V, VREF = 4.096V Guaranteed monotonic, VDD = 1.8V, VREF = 1.024V Offset Error (Note 2) Offset-Error Temperature Drift Gain Error (Note 3) Gain-Error Temperature Power-Supply Rejection Ratio Resolution Integral Nonlinearity (Note 1) PSRR N INL VDD = 5V, VREF = 3.9V VDD = 1.8V, VREF = 1.2V Guaranteed monotonic, VDD = 5V, VREF = 3.9V Guaranteed monotonic, VDD = 1.8V, VREF = 1.2V Offset Error (Note 2) Offset-Error Temperature Drift Gain Error (Note 3) Gain-Error Temperature Coefficient Power-Supply Rejection Ratio PSRR 1.8V VDD 5.5V GE VDD = 5V, VREF = 3.9V VDD = 1.8V, VREF = 1.2V VOS VDD = 5V, VREF = 3.9V VDD = 1.8V, VREF = 1.2V 1.8V VDD 5.5V 8 0.25 0.25 0.2 0.2 1 1 2 0.5 0.5 4 85 1 1 1 1 1 LSB 1 20 20 mV V/C LSB ppm/C dB STATIC ACCURACY (MAX5513/MAX5515 INTERNAL REFERENCE) Bits LSB GE VDD = 5V, VREF = 4.096V VDD = 1.8V, VREF = 1.024V VOS VDD = 5V, VREF = 4.096V VDD = 1.8V, VREF = 1.024V CONDITIONS MIN 8 0.25 0.25 0.2 0.2 1 1 2 0.5 0.5 4 85 1 1 1 1 1 LSB 1 20 20 mV V/C LSB ppm/C dB TYP MAX UNITS Bits LSB
STATIC ACCURACY (MAX5512/MAX5514 EXTERNAL REFERENCE)
Differential Nonlinearity (Note 1)
DNL
Differential Nonlinearity (Note 1)
DNL
2
_______________________________________________________________________________________
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs
ELECTRICAL CHARACTERISTICS (continued)
(VDD = +1.8V to +5.5V, OUT_ unloaded, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.)
PARAMETER Reference-Input Voltage Range Reference-Input Impedance SYMBOL VREFIN RREFIN Normal operation In shutdown No external load, VDD = 1.8V Initial Accuracy VREFOUT No external load, VDD = 2.5V No external load, VDD = 3V No external load, VDD = 5V Output-Voltage Temperature Coefficient (Note 4) Line Regulation VTEMPCO TA = -40C to +85C VREFOUT < VDD - 200mV (Note 5) 0 IREFOUT 1mA, sourcing, VDD = 1.8V, VREF = 1.2V Load Regulation 0 IREFOUT 8mA, sourcing, VDD = 5V, VREF = 3.9V -150A IREFOUT 0, sinking 0.1Hz to 10Hz, VREF = 3.9V Output Noise Voltage 10Hz to 10kHz, VREF = 3.9V 0.1Hz to 10Hz, VREF = 1.2V 10Hz to 10kHz, VREF = 1.2V Short-Circuit Current (Note 6) Capacitive Load Stability Range Thermal Hysteresis Reference Power-Up Time (from Shutdown) Long-Term Stability DAC OUTPUTS (OUTA, OUTB) Capacitive Driving Capability CL VDD = 5V, VOUT set to full scale, OUT shorted to GND, source current VDD = 5V, VOUT set to 0V, OUT shorted to VDD, sink current VDD = 1.8V, VOUT set to full scale, OUT shorted to GND, source current VDD = 1.8V, VOUT set to 0V, OUT shorted to VDD, sink current 1000 65 65 mA 14 14 pF VDD = 5V VDD = 1.8V (Note 7) (Note 8) REFOUT unloaded, VDD = 5V REFOUT unloaded, VDD = 1.8V 1.197 1.913 2.391 3.828 CONDITIONS MIN 0 4.1 2.5 1.214 1.940 2.425 3.885 12 12 0.3 0.3 0.2 150 600 50 450 30 14 0 to 10 200 5.4 4.4 200 mA nF ppm ms ppm/ 1khrs VP-P 1.231 1.967 2.459 3.941 30 200 2 2 V/A ppm/C V/V V TYP MAX VDD UNITS V M G
MAX5512-MAX5515
REFERENCE INPUT (MAX5512/MAX5514)
REFERENCE OUTPUT (MAX5513/MAX5515)
Short-Circuit Current (Note 6)
_______________________________________________________________________________________
3
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs MAX5512-MAX5515
ELECTRICAL CHARACTERISTICS (continued)
(VDD = +1.8V to +5.5V, OUT_ unloaded, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.)
PARAMETER SYMBOL CONDITIONS Coming out of shutdown (MAX5512/MAX5514) DAC Power-Up Time Coming out of standby (MAX5513/MAX5515) Output Power-Up Glitch FB_ Input Current DIGITAL INPUTS (SCLK, DIN, CS) 4.5V VDD 5.5V Input High Voltage VIH 2.7V < VDD 3.6V 1.8V VDD 2.7V 4.5V VDD 5.5V Input Low Voltage Input Leakage Current Input Capacitance DYNAMIC PERFORMANCE Voltage-Output Slew Rate Voltage-Output Settling Time SR Positive and negative (Note 10) 0.1 to 0.9 of full scale to within 0.5 LSB (Note 10) 0.1Hz to 10Hz Output Noise Voltage 10Hz to 10kHz POWER REQUIREMENTS Supply Voltage Range VDD VDD = 5V MAX5513/MAX5515 Supply Current (Note 9) IDD MAX5512/MAX5514 VDD = 3V VDD = 1.8V VDD = 5V VDD = 3V VDD = 1.8V Standby Supply Current Shutdown Supply Current IDDSD IDDPD MAX5513/MAX5515 (Note 9) (Note 9) VDD = 5V VDD = 3V VDD = 1.8V 1.8 7.0 6.4 7.0 3.8 3.8 4.7 3.3 2.8 2.4 0.05 5.5 8.0 8.0 8.0 5.0 5.0 6.0 4.5 4.0 3.5 0.25 A A A V VDD = 5V VDD = 1.8V VDD = 5V VDD = 1.8V 10 660 80 55 620 476 VP-P V/ms s VIL IIN CIN 2.7V < VDD 3.6V 1.8V VDD 2.7V (Note 9) 0.05 10 2.4 2.0 0.7 x VDD 0.8 0.6 0.3 x VDD 0.5 A pF V V CL = 100pF VDD = 5V VDD = 1.8V VDD = 1.8V to VDD = 5V MIN TYP 3 3.8 0.4 10 10 mV pA ms MAX UNITS
4
_______________________________________________________________________________________
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs
TIMING CHARACTERISTICS
(VDD = +4.5V to +5.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.)
PARAMETER Serial Clock Frequency DIN to SCLK Rise Setup Time DIN to SCLK Rise Hold Time SCLK Pulse-Width High SCLK Pulse-Width Low CS Pulse-Width High SCLK Rise to CS Rise Hold Time CS Fall to SCLK Rise Setup Time SCLK Fall to CS Fall Setup CS Rise to SCK Rise Hold Time SYMBOL fSCLK tDS tDH tCH tCL tCSW tCSH tCSS tCSO tCS1 CONDITIONS MIN 0 15 0 24 24 100 0 20 0 20 TYP MAX 16.7 UNITS MHz ns ns ns ns ns ns ns ns ns
MAX5512-MAX5515
TIMING CHARACTERISTICS (VDD = 4.5V to 5.5V )
TIMING CHARACTERISTICS
(VDD = +1.8V to +5.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.)
PARAMETER Serial Clock Frequency DIN to SCLK Rise Setup Time DIN to SCLK Rise Hold Time SCLK Pulse-Width High SCLK Pulse-Width Low CS Pulse-Width High SCLK Rise to CS Rise Hold Time CS Fall to SCLK Rise Setup Time SCLK Fall to CS Fall Setup CS Rise to SCK Rise Hold Time SYMBOL fSCLK tDS tDH tCH tCL tCSW tCSH tCSS tCSO tCS1 CONDITIONS MIN 0 24 0 40 40 150 0 30 0 30 TYP MAX 10 UNITS MHz ns ns ns ns ns ns ns ns ns
TIMING CHARACTERISTICS (VDD = 1.8V to 5.5V )
Note 1: Linearity is tested within codes 6 to 255. Note 2: Offset is tested at code 6. Note 3: Gain is tested at code 255. For the MAX5514/MAX5515, FB_ is connected to its respective OUT_. Note 4: Guaranteed by design. Not production tested. Note 5: VDD must be a minimum of 1.8V. Note 6: Outputs can be shorted to VDD or GND indefinitely, provided that package power dissipation is not exceeded. Note 7: Optimal noise performance is at 2nF load capacitance. Note 8: Thermal hysteresis is defined as the change in the initial +25C output voltage after cycling the device from TMAX to TMIN. Note 9: All digital inputs at VDD or GND. Note 10: Load = 10k in parallel with 100pF, VDD = 5V, VREF = 4.096V (MAX5512/MAX5514) or VREF = 3.9V (MAX5513/MAX5515).
_______________________________________________________________________________________
5
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs MAX5512-MAX5515
Typical Operating Characteristics
(VDD = 5.0V, VREF = 4.096V (MAX5512/MAX5514), VREF = 3.9V (MAX5513/MAX5515), TA = +25C, unless otherwise noted.)
SUPPLY CURRENT vs. SUPPLY VOLTAGE (MAX5512/MAX5514)
MAX5512 toc01
SUPPLY CURRENT vs. TEMPERATURE (MAX5512/MAX5514)
MAX5512 toc02
SUPPLY CURRENT vs. SUPPLY VOLTAGE (MAX5513/MAX5515)
9 8 SUPPLY CURRENT (A) 7 6 5 4 3 2 1 0
MAX5512 toc03
5.0 4.5 4.0 SUPPLY CURRENT (A) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0
5.0 4.5 4.0 SUPPLY CURRENT (A) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0
10
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 SUPPLY VOLTAGE (V)
-40
-15
10
35
60
85
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 SUPPLY VOLTAGE (V)
TEMPERATURE (C)
SUPPLY CURRENT vs. TEMPERATURE (MAX5513/MAX5515)
MAX5512 toc04
SHUTDOWN SUPPLY CURRENT vs. TEMPERATURE (MAX5512/MAX5514)
MAX5512 toc05
SHUTDOWN SUPPLY CURRENT vs. TEMPERATURE (MAX5513/MAX5515)
MAX5512 toc06
10 9 8 SUPPLY CURRENT (A) 7 6 5 4 3 2 1 0 -40 -15 10 35 60
1000 SHUTDOWN SUPPLY CURRENT (nA)
1000 SHUTDOWN SUPPLY CURRENT (nA)
100
100
10
10
1
1
0.1 85 -40 -15 10 35 60 85 TEMPERATURE (C) TEMPERATURE (C)
0.1 -40 -15 10 35 60 85 TEMPERATURE (C)
STANDBY SUPPLY CURRENT vs. TEMPERATURE (MAX5513/MAX5515)
MAX5512 toc07
SUPPLY CURRENT vs. CLOCK FREQUENCY
MAX5512 toc08
SUPPLY CURRENT vs. LOGIC INPUT VOLTAGE
4.5 4.0 SUPPLY CURRENT (mA) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 VDD = 5V ALL DIGITAL INPUTS SHORTED TOGETHER
MAX5512 toc09
5.0 4.5 STANDBY SUPPLY CURRENT (A) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -40 -15 10 35 60 VREF = 1.9V VREF = 1.219V VREF = 3.9V VREF = 2.4V
1000 CS = LOGIC LOW CODE = 0 SUPPLY CURRENT (A) VDD = 5V 100
5.0
10
VDD = 1.8V
1 85 0.01 0.1 1 10 100 1000 10000 100000 TEMPERATURE (C) FREQUENCY (kHz)
0 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 LOGIC INPUT VOLTAGE (V)
6
_______________________________________________________________________________________
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs
Typical Operating Characteristics (continued)
(VDD = 5.0V, VREF = 4.096V (MAX5512/MAX5514), VREF = 3.9V (MAX5513/MAX5515), TA = +25C, unless otherwise noted.)
DNL vs. INPUT CODE (VDD = VREF = 1.8V)
MAX5512 toc11
MAX5512-MAX5515
INL vs. INPUT CODE (VDD = VREF = 1.8V)
MAX5512 toc10
INL vs. INPUT CODE (VDD = VREF = 5V)
0.10 0.05 0 DNL (LSB) INL (LSB) -0.05 -0.10 -0.15 -0.20 -0.25 -0.30 0.014 0.012 0.010 0.008 0.006 0.004 0.002 0
0.05 0 INL (LSB) -0.05 -0.10 -0.15 -0.20 -0.25 -0.30 0 50 100 150 200 250
-0.002 -0.004 -0.006 0 50 100 150 200 250 300 0 50 100 150 200 250 300 DIGITAL INPUT CODE DIGITAL INPUT CODE
300
DIGITAL INPUT CODE
DNL vs. INPUT CODE (VDD = VREF = 5V)
MAX5512 toc13
OFFSET VOLTAGE vs. TEMPERATURE
MAX5512 toc14
0.8 0.6 OFFSET VOLTAGE (mV) 0.4 0.2 0 -0.2 -0.4 -0.6
0.03 0.02 DNL (LSB) 0.01 0 -0.01 -0.02 -0.03 0 50 100 150 200 250
0.020 GAIN ERROR CHANGE (LSB) 0.015 0.010 0.005 0 -0.005 -0.010 -0.015 -0.020
VDD = 5V VREF = 3.9V
-0.8 -1.0 300 -40 -15 10 35 60 85 DIGITAL INPUT CODE TEMPERATURE (C)
-0.025 -40 -15 10 35 60 85 TEMPERATURE (C)
DIGITAL FEEDTHROUGH RESPONSE
MAX5512 toc16
DAC OUTPUT LOAD REGULATION vs. OUTPUT CURRENT
MAX5512 toc17
DAC OUTPUT LOAD REGULATION vs. OUTPUT CURRENT
1.9435 DAC OUTPUT VOLTAGE (V) 1.9430 1.9425 1.9420 1.9415 1.9410 1.9405 VDD = 5.0V DAC CODE = MIDSCALE VREF = 3.9V
MAX5512 toc18
ZERO SCALE DAC OUTPUT VOLTAGE (V) CS 5V/div SCLK 5V/div DIN 5V/div OUT 50mV/div 20s/div
0.6050 VDD = 1.8V DAC CODE = MIDSCALE VREF = 1.2V
1.9440
0.6048
0.6046
0.6044
0.6042
0.6040 -1000-800 -600 -400 -200 0 200 400 600 800 1000 DAC OUTPUT CURRENT (A)
1.9400 -10 -8 -6 -4 -2 0 2 4 6 8 10 DAC OUTPUT CURRENT (mA)
_______________________________________________________________________________________
MAX5512 toc15
0.04
1.0
GAIN ERROR CHANGE vs. TEMPERATURE
0.025
VDD = 5V VREF = 3.9V
MAX5512 toc12
0.10
7
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs MAX5512-MAX5515
Typical Operating Characteristics (continued)
(VDD = 5.0V, VREF = 4.096V (MAX5512/MAX5514), VREF = 3.9V (MAX5513/MAX5515), TA = +25C, unless otherwise noted.)
DAC OUTPUT VOLTAGE vs. OUTPUT SOURCE CURRENT
MAX5512 toc19
DAC OUTPUT VOLTAGE vs. OUTPUT SINK CURRENT
4.5 DAC OUTPUT VOLTAGE (V) 4.0 3.5 3.0 2.5 2.0 1.5 1.0 VDD = 3V VDD = 5V VREF = VDD CODE = MIDSCALE
MAX5512 toc20
5
OUTPUT LARGE-SIGNAL STEP RESPONSE (VDD = 1.8V, VREF = 1.2V)
MAX5512 toc21
VREF = VDD CODE = MIDSCALE
5.0
4 OUTPUT VOLTAGE (V)
3
VDD = 5V
VOUT 200mV/div
2
VDD = 3V
1 VDD = 1.8V 0 0.001 0.010 0.100 1 10 100
0.5 0 0.001 0.01 0.1
VDD = 1.8V 1 10 100 100s/div
OUTPUT SOURCE CURRENT (mA)
OUTPUT SINK CURRENT (mA)
OUTPUT LARGE-SIGNAL STEP RESPONSE (VDD = 5V, VREF = 3.9V)
MAX5512 toc22
OUTPUT MINIMUM SERIES RESISTANCE vs. LOAD CAPACITANCE
FOR NO OVERSHOOT
MAX5512 toc23
POWER-UP OUTPUT VOLTAGE GLITCH
MAX5512 toc24
600 MINIMUM SERIES RESISTANCE () 500 400 300 200 100
VOUT 500mV/div
VDD 2V/div
VOUT 10mV/div
200s/div
0 0.0001 0.001
0.01
0.1
1
10
100
20ms/div
CAPACITANCE (F)
MAJOR CARRY OUTPUT VOLTAGE GLITCH (CODE 7FFh TO 800h) (VDD = 5V, VREF = 3.9V)
MAX5512 toc25
REFERENCE OUTPUT VOLTAGE vs. TEMPERATURE
MAX5512 toc26
REFERENCE OUTPUT VOLTAGE vs. REFERENCE OUTPUT CURRENT
VDD = 1.8V REFERENCE OUTPUT VOLTAGE (V) 1.219 1.218 1.217 1.216 1.215 1.214
MAX5512 toc27
3.940 REFERENCE OUTPUT VOLTAGE (V) 3.935 3.930 3.925 3.920 3.915 3.910 3.905 3.900
VDD = 5V
1.220
VOUT AC-COUPLED 5mV/div
-40 100s/div
-15
10
35
60
85
-500
1500
3500
5500
7500
TEMPERATURE (C)
REFERENCE OUTPUT CURRENT (A)
8
_______________________________________________________________________________________
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs
Typical Operating Characteristics (continued)
(VDD = 5.0V, VREF = 4.096V (MAX5512/MAX5514), VREF = 3.9V (MAX5513/MAX5515), TA = +25C, unless otherwise noted.)
MAX5512-MAX5515
REFERENCE OUTPUT VOLTAGE vs. REFERENCE OUTPUT CURRENT
MAX5512 toc28
REFERENCE OUTPUT VOLTAGE vs. SUPPLY VOLTAGE
1.21748 REFERENCE OUTPUT VOLTAGE (V) 1.21746 1.21744 1.21742 1.21740 1.21738 1.21736 1.21734 1.21732 NO LOAD
MAX5512 toc29
REFERENCE LINE-TRANSIENT RESPONSE (VREF = 1.2V)
MAX5512 toc30
3.92 VDD = 5V REFERENCE OUTPUT VOLTAGE (V) 3.91
1.21750
2.8V VDD 1.8V VREF 500mV/div
3.90
3.89
3.88 -500 2000 4500 7000 9500 12,000 14,500 REFERENCE OUTPUT CURRENT (A)
1.21730 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 SUPPLY VOLTAGE (V) 100s/div
REFERENCE LINE-TRANSIENT RESPONSE (VREF = 3.9V)
MAX5512 toc31
REFERENCE LOAD TRANSIENT (VDD = 1.8V)
MAX5512 toc32
5.5V VDD 4.5V VREF 500mV/div 3.9V REFOUT SOURCE CURRENT 0.5mA/div VREF 500mV/div
100s/div
200s/div
REFERENCE LOAD TRANSIENT (VDD = 5V)
MAX5512 toc33
REFERENCE LOAD TRANSIENT (VDD = 1.8V)
MAX5512 toc34
REFOUT SOURCE CURRENT 0.5mA/div
REFOUT SINK CURRENT 50A/div
VREF 500mV/div 3.9V
VREF 500mV/div
200s/div
200s/div
_______________________________________________________________________________________
9
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs MAX5512-MAX5515
Typical Operating Characteristics (continued)
(VDD = 5.0V, VREF = 4.096V (MAX5512/MAX5514), VREF = 3.9V (MAX5513/MAX5515), TA = +25C, unless otherwise noted.)
REFERENCE LOAD TRANSIENT (VDD = 5V)
MAX5512 toc35
REFERENCE PSRR vs. FREQUENCY
POWER-SUPPLY REJECTION RATIO (dB) 70 60 50 40 30 20 10 0 0.01 0.1 1 10 100 1000 VDD = 1.8V
MAX5512 toc36
80 REFOUT SINK CURRENT 100A/div
VREF 500mV/div 3.9V
200s/div
FREQUENCY (kHz)
REFERENCE PSRR vs. FREQUENCY
POWER-SUPPLY REJECTION RATIO (dB) 70 60 50 40 30 20 10 0 0.01 0.1 1 10 100 1000 VDD = 5V
MAX5512 toc37
REFERENCE OUTPUT NOISE (0.1Hz TO 10Hz) (VDD = 1.8V, VREF = 1.2V)
MAX5512 toc38
80
100V/div
1s/div
FREQUENCY (kHz)
REFERENCE OUTPUT NOISE (0.1Hz TO 10Hz) (VDD = 5V, VREF = 3.9V)
MAX5512 toc39
DAC-TO-DAC CROSSTALK
MAX5512 toc40
OUTA 1V/div
100V/div
OUTB AC-COUPLED 10mV/div
OUTB AT FULL SCALE 400s/div 1s/div
10
______________________________________________________________________________________
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs
Pin Description
PIN MAX5512 1 2 3 4 -- -- -- 5 6 7 8 -- -- MAX5513 1 2 3 -- 4 -- -- 5 6 7 8 -- -- MAX5514 1 2 3 4 -- 5, 11 6 7 8 9 10 12 EP MAX5515 1 2 3 -- 4 5, 11 6 7 8 9 10 12 EP NAME CS SCLK DIN REFIN REFOUT N.C. FBB OUTB VDD GND OUTA FBA Exposed Paddle FUNCTION Active-Low Digital Chip-Select Input Serial-Interface Clock Input Serial-Interface Data Input Reference Input Reference Output No Connection. Leave N.C. inputs unconnected (floating) or connected to GND. Channel B Feedback Input Channel B Analog Voltage Output Power Input. Connect VDD to a 1.8V to 5.5V power supply. Bypass VDD to GND with a 0.1F capacitor. Ground Channel A Analog Voltage Output Channel A Feedback Input Exposed Paddle. Connect EP to GND.
MAX5512-MAX5515
Functional Diagrams
VDD
REFIN
POWERDOWN CONTROL
MAX5512
INPUT REGISTER DAC REGISTER
8-BIT DAC OUTA
SCLK DIN CS
CONTROL LOGIC AND SHIFT REGISTER INPUT REGISTER DAC REGISTER 8-BIT DAC
OUTB
GND
______________________________________________________________________________________
11
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs MAX5512-MAX5515
Functional Diagrams (continued)
VDD
POWERDOWN CONTROL
2-BIT PROGRAMMABLE REFERENCE INPUT REGISTER DAC REGISTER
REF BUF
REFOUT
MAX5513
8-BIT DAC OUTA CONTROL LOGIC AND SHIFT REGISTER INPUT REGISTER DAC REGISTER 8-BIT DAC OUTB
SCLK DIN CS
GND
VDD
REFIN
POWERDOWN CONTROL
MAX5514
INPUT REGISTER DAC REGISTER
8-BIT DAC OUTA
SCLK DIN CS
CONTROL LOGIC AND SHIFT REGISTER INPUT REGISTER DAC REGISTER 8-BIT DAC
FBA
OUTB
FBB GND
12
______________________________________________________________________________________
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs
Functional Diagrams (continued)
VDD
MAX5512-MAX5515
POWERDOWN CONTROL
2-BIT PROGRAMMABLE REFERENCE INPUT REGISTER DAC REGISTER
REF BUF
REFOUT
MAX5515
8-BIT DAC OUTA CONTROL LOGIC AND SHIFT REGISTER INPUT REGISTER DAC REGISTER 8-BIT DAC OUTB
SCLK DIN CS
FBA
FBB GND
Detailed Description
The MAX5512-MAX5515 dual, 8-bit, ultra-low-power, voltage-output DACs offer Rail-to-Rail buffered voltage outputs. The DACs operate from a 1.8V to 5.5V supply and require only 5A (max) supply current. These devices feature a shutdown mode that reduces overall current, including the reference input current, to just 0.18A (max). The MAX5513/MAX5515 include an internal reference that saves additional board space and can source up to 8mA, making it functional as a system reference. The 16MHz, 3-wire serial interface is compatible with SPI, QSPI, and MICROWIRE protocols. When VDD is applied, all DAC outputs are driven to zero scale with virtually no output glitch. The MAX5512/MAX5513 output buffers are configured in unity gain and come in MAX packages. The MAX5514/MAX5515 output buffers are configured in force sense allowing users to externally set voltage gains on the output (an output-amplifier inverting input is available). The MAX5514/MAX5515 come in 4mm x 4mm thin QFN packages.
The MAX5512-MAX5515 include a single, 16-bit, input shift register. Data loads into the shift register through the serial interface. CS must remain low until all 16 bits are clocked in. The 16 bits consist of 4 control bits (C3-C0), 8 data bits (D7-D0) (Table 1), and 4 sub-bits (S3-S0). The sub-bits must be set to zero for proper operation. Following the 4 control bits, the data loads MSB first, D7-D0. D7-D0 are the DAC data bits and S3-S0 are the sub-bits. The control bits C3-C0 control the MAX5512-MAX5515, as outlined in Table 2. Each DAC channel includes two registers: an input register and a DAC register. The input register holds input data. The DAC register contains the data updated to the DAC output. The double-buffered register configuration allows any of the following: * Loading the input registers without updating the DAC registers * Updating the DAC registers from the input registers * Updating all the input and DAC registers simultaneously
Digital Interface
The MAX5512-MAX5515 use a 3-wire serial interface that is compatible with SPI/QSPI/MICROWIRE protocols (Figures 1 and 2).
______________________________________________________________________________________
13
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs MAX5512-MAX5515
Table 1. Serial Write Data Format
CONTROL MSB C3 C2 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0 S3 S2 S1 DATA BITS LSB S0
Sub-bits S3 to S0 must be set to zero for proper operation.
tCH SCLK tDS DIN tCS0 tCSS CS tCSW tCS1 C3 tDH C2 tCL
C1
S0 tCSH
Figure 1. Timing Diagram
SCLK
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
DIN
C3
C2
C1
C0
D7
D6
D5
D4
D3
D2
D1
D0
S3
S2 SUB-BITS
S1
S0
CONTROL BITS CS
DATA BITS
COMMAND EXECUTED
Figure 2. Register Loading Diagram
14
______________________________________________________________________________________
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs
Table 2. Serial Interface Programming Commands
CONTROL BITS C3 0 0 0 0 0 0 0 0 C2 0 0 0 0 1 1 1 1 C1 0 0 1 1 0 0 1 1 C0 0 1 0 1 0 1 0 1 INPUT DATA D7-D0 XXXXXXXX 8-bit data 8-bit data -- -- -- -- -- SUB-BITS S3, S2, S1, S0 0000 0000 0000 -- -- -- -- -- FUNCTION No operation; command is ignored. Load input register A from shift register; DAC registers unchanged; DAC outputs unchanged. Load input register B from shift register; DAC registers unchanged; DAC outputs unchanged. Command reserved. Do not use. Command reserved. Do not use. Command reserved. Do not use. Command reserved. Do not use. Command reserved. Do not use. Load DAC registers A and B from respective input registers; DAC outputs A and B updated; MAX5513/MAX5515 enter normal operation if in standby or shutdown; MAX5512/MAX5514 enter normal operation if in shutdown. Load input register A and DAC register A from shift register; DAC output A updated; Load DAC register B from input register B; DAC output B updated; MAX5513/MAX5515 enter normal operation if in standby or shutdown; MAX5512/MAX5514 enter normal operation if in shutdown. Load input register B and DAC register B from shift register; DAC output B updated; Load DAC register A from input register A; DAC output A updated; MAX5513/MAX5515 enter normal operation if in standby or shutdown; MAX5512/MAX5514 enter normal operation if in shutdown. Command reserved. Do not use. MAX5513/MAX5515 enter standby*, MAX5512/MAX5514 enter shutdown. For the MAX5513/MAX5515, D7 and D6 configure the internal reference voltage (Table 3). MAX5512-MAX5515 enter normal operation; DAC outputs reflect existing contents of DAC registers. For the MAX5513/MAX5515, D7 and D6 configure the internal reference voltage (Table 3). MAX5512-MAX5515 enter shutdown; DAC outputs set to high impedance. For the MAX5513/MAX5515, D7 and D6 configure the internal reference voltage (Table 3). Load input registers A and B and DAC registers A and B from shift register; DAC outputs A and B updated; MAX5513/MAX5515 enter normal operation if in standby or shutdown; MAX5512/MAX5514 enter normal operation if in shutdown.
MAX5512-MAX5515
1
0
0
0
8-bit data
0000
1
0
0
1
8-bit data
0000
1
0
1
0
8-bit data
0000
1 1
0 1
1 0
1 0
-- D7, D6, XXXXXX
-- 0000
1
1
0
1
D7, D6, XXXXXX
0000
1
1
1
0
D7, D6, XXXXXX
0000
1
1
1
1
8-bit data
0000
X = Don't care. *Standby mode can be entered from normal operation only. It is not possible to enter standby mode from shutdown.
______________________________________________________________________________________
15
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs MAX5512-MAX5515
Power Modes
The MAX5512-MAX5515 feature two power modes to conserve power during idle periods. In normal operation, the device is fully operational. In shutdown mode, the device is completely powered down, including the internal voltage reference in the MAX5513/MAX5515. The MAX5513/MAX5515 also offer a standby mode in which all circuitry is powered down except the internal voltage reference. Standby mode keeps the reference powered up while the remaining circuitry is shut down, allowing it to be used as a system reference. It also helps reduce the wake-up delay by not requiring the reference to power up when returning to normal operation. Shutdown Mode The MAX5512-MAX5515 feature a software-programmable shutdown mode that reduces the supply current and the reference input current to 0.18A (max). Writing an input control word with control bits C[3:0] = 1110 (Table 2) places the device in shutdown mode. In shutdown, the MAX5512/MAX5514 reference input and DAC output buffers go high impedance. Placing the MAX5513/ MAX5515 into shutdown turns off the internal reference and the DAC output buffers go high impedance. The serial interface still remains active for all devices. Table 2 shows several commands that bring the MAX5512-MAX5515 back to normal operation. The power-up time from shutdown is required before the DAC outputs are valid. Note: For the MAX5513/MAX5515, standby mode cannot be entered directly from shutdown mode. The device must be brought into normal operation first before entering standby mode. Standby Mode (MAX5513/MAX5515 Only) The MAX5513/MAX5515 feature a software-programmable standby mode that reduces the typical supply current to 3A (max). Standby mode powers down all circuitry except the internal voltage reference. Place the device in standby mode by writing an input control word with control bits C[3:0] = 1100 (Table 2). The internal reference and serial interface remain active while the DAC output buffers go high impedance. For the MAX5513/MAX5515, standby mode cannot be entered directly from shutdown mode. The device must be brought into normal operation first before entering standby mode. To enter standby from shutdown, issue the command to return to normal operation followed immediately by the command to go into standby. Table 2 shows several commands that bring the MAX5513/MAX5515 back to normal operation. When transitioning from standby mode to normal operation, only the DAC power-up time is required before the DAC outputs are valid.
Reference Input
The MAX5512/MAX5514 accept a reference with a voltage range extending from 0 to VDD. The output voltage (VOUT) is represented by a digitally programmable voltage source as: VOUT = (VREF x N / 256) x gain where N is the numeric value of the DAC's binary input code (0 to 255), VREF is the reference voltage, gain is the externally set voltage gain for the MAX5514, and gain is one for the MAX5512. In shutdown mode, the reference input enters a highimpedance state with an input impedance of 2.5G (typ).
Reference Output
The MAX5513/MAX5515 internal voltage reference is software configurable to one of four voltages. Upon power-up, the default reference voltage is 1.214V. Configure the reference voltage using D7 and D6 data bits (Table 3) when the control bits are as follows C[3:0] = 1100, 1101, or 1110 (Table 2). VDD must be kept at a minimum of 200mV above VREF for proper operation.
Table 3. Reference Output Voltage Programming
D7 0 0 1 1 D6 0 1 0 1 REFERENCE VOLTAGE (V) 1.214 1.940 2.425 3.885
16
______________________________________________________________________________________
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs
Applications Information
1-Cell and 2-Cell Circuits
See Figure 3 for an illustration of how to power the MAX5512-MAX5515 with either one lithium-ion battery or two alkaline batteries. The low current consumption of the devices make the MAX5512-MAX5515 ideal for battery-powered applications.
Programmable Current Source
See the circuit in Figure 4 for an illustration of how to configure the MAX5514/MAX5515 as a programmable current source for driving an LED. The MAX5514/ MAX5515 drive a standard NPN transistor to program the current source. The current source (ILED) is defined in the equation in Figure 4.
MAX5512-MAX5515
VDD 1.8V VALKALINE 3.3V 2.2V VLITHIUM 3.3V 536k +1.25V 0.1F REFIN DAC VOUT VOUT (4.88mV / LSB)
MAX6006
(1A, 1.25V SHUNT REFERENCE)
0.01F
1/2 MAX5514
GND
V x NDAC VOUT = REFIN 256 NDAC IS THE NUMERIC VALUE OF THE DAC INPUT CODE.
Figure 3. Portable Application Using Two Alkaline Cells or One Lithium Coin Cell
V+ LED ILED REFIN DAC VOUT 2N3904 REFIN DAC VOUT VOUT VOUT = VBIAS + (IT x R)
1/2 MAX5514
FB TRANSDUCER IT R
1/2 MAX5514
FB
V x NDAC ILED = REFIN 256 x R NDAC IS THE NUMERIC VALUE OF THE DAC INPUT CODE.
R
VBIAS
V x NDAC VBIAS = REF 256 NDAC IS THE NUMERIC VALUE OF THE DAC INPUT CODE.
Figure 4. Programmable Current Source Driving an LED
Figure 5. Transimpedance Configuration for a Voltage-Biased Current-Output Transducer 17
______________________________________________________________________________________
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs MAX5512-MAX5515
Voltage Biasing a Current-Output Transducer
See the circuit in Figure 5 for an illustration of how to configure the MAX5514/MAX5515 to bias a current-output transducer. In Figure 5, the output voltage of the MAX5514/MAX5515 is a function of the voltage drop across the transducer added to the voltage drop across the feedback resistor R.
Table 4. Unipolar Code Table (Gain = +1)
DAC CONTENTS MSB 1111 1000 1000 0111 0000 0000 1111 0001 0000 1111 0001 0000 LSB 0000 0000 0000 0000 0000 0000 ANALOG OUTPUT +VREF (255/256) +VREF (129/256) +VREF (128/256) = +VREF/2 +VREF (127/256) +VREF (1/256) 0V
Unipolar Output
Figure 6 shows the MAX5514 in a unipolar output configuration with unity gain. Table 4 lists the unipolar output codes.
Bipolar Output
The MAX5514 output can be configured for bipolar operation as shown in Figure 7. The output voltage is given by the following equation: VOUT_ = VREFIN x [(NA - 128) / 128] where NA represents the decimal value of the DAC's binary input code. Table 5 shows the digital codes (offset binary) and the corresponding output voltage for the circuit in Figure 7.
Table 5. Bipolar Code Table (Gain = +1)
DAC CONTENTS MSB 1111 1000 1000 0111 0000 0000 1111 0001 0000 1111 0001 0000 LSB 0000 0000 0000 0000 0000 0000 ANALOG OUTPUT +VREF (127/128) +VREF (1/128) 0V -VREF (1/128) -VREF (127/128) -VREF (128/128) = -VREF
Configurable Output Gain
The MAX5514/MAX5515 have force-sense outputs, which provide a connection directly to the inverting terminal of the output op amp, yielding the most flexibility. The advantage of the force-sense output is that specific gains can be set externally for a given application. The gain error for the MAX5514/MAX5515 is specified in a unity-gain configuration (op-amp output and inverting terminals connected), and additional gain error results from external resistor tolerances. Another advantage of the force-sense DAC is that it allows many useful circuits to be created with only a few simple external components.
An example of a custom fixed gain using the MAX5514/ MAX5515 force-sense output is shown in Figure 9. In this example, R1 and R2 set the gain for VOUTA. VOUTA = [(VREFIN x NA) / 256] x [1 + (R2 / R1)] where NA represents the numeric value of the DAC input code.
10k REFIN DAC
10k
OUT_ DAC
V+ VOUT
MAX5514
FB_ VOUT = VREFIN x NA 256
REFIN
OUT_ V-
NA IS THE DAC_ INPUT CODE (0 TO 255 DECIMAL).
1/2 MAX5514
FB_
Figure 6. Unipolar Output Circuit
Figure 7. Bipolar Output Circuit
18
______________________________________________________________________________________
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs MAX5512-MAX5515
V 255 - NPOT x NDAC VOUT = REFIN 1+ 256 255
(
)
REFIN
DAC
NDAC IS THE NUMERIC VALUE OF THE DAC INPUT CODE. NPOT IS THE NUMERIC VALUE OF THE POT INPUT CODE. VOUTA R2 FBA VOUT1 V R2 x NDACA VOUT1 = REFIN 1+ 256 R1 1.8V VDD 5.5V
(
)
CS1
REFIN
DAC
NDACA IS THE NUMERIC VALUE OF THE DAC A INPUT CODE.
VOUT VOUT H
1/2 MAX5514
DAC
R1
1/2 MAX5514
VOUTB VOUT2 VREFIN x NDACB VOUT2 = 256 FBB NDACB IS THE NUMERIC VALUE OF THE DAC B INPUT CODE. SCLK DIN CS2 L 5PPM/C RATIOMETRIC TEMPCO FB W
MAX5401 SOT-POT 100k
Figure 8. Separate Force-Sense Outputs Create Unity and Greater-than-Unity DAC Gains Using the Same Reference
Figure 9. Software-Configurable Output Gain
Self-Biased Two-Electrode Potentiostat Application
See the circuit in Figure 10 for an illustration of how to use the MAX5515 to bias a two-electrode potentiostat on the input of an ADC.
Power Supply and Bypassing Considerations
Bypass the power supply with a 0.1F capacitor to GND. Minimize lengths to reduce lead inductance. If noise becomes an issue, use shielding and/or ferrite beads to increase isolation. For the thin QFN package, connect the exposed pad to ground.
REF OUT IF FB RF TO ADC WE SENSOR CE
DAC
TO ADC
Layout Considerations
Digital and AC transient signals coupling to GND can create noise at the output. Use proper grounding techniques, such as a multilayer board with a low-inductance ground plane. Wire-wrapped boards and sockets are not recommended. For optimum system performance, use printed circuit (PC) boards. Good PC board ground layout minimizes crosstalk between DAC outputs, reference inputs, and digital inputs. Reduce crosstalk by keeping analog lines away from digital lines.
1/2 MAX5515
BAND GAP
REFOUT CL
TO ADC
Figure 10. Self-Biased Two-Electrode Potentiostat Application
______________________________________________________________________________________
19
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs MAX5512-MAX5515
Pin Configurations (continued)
REF DAC OUTA IF FBA CS SCLK DIN 1 2 3 RF TO ADC
TOP VIEW
FBA 12 N.C. 11 OUTA 10
WE
9
GND VDD OUTB
MAX5515
SENSOR REF DAC OUTB CE
MAX5514 MAX5515
8 7
4 FBB BAND GAP REFOUT CL REFIN(MAX5514) REFOUT(MAX5515) TO ADC
5 N.C.
6 FBB
THIN QFN
Figure 11. Driven Two-Electrode Potentiostat Application
Chip Information
TRANSISTOR COUNT: 10,688 PROCESS: BiCMOS
20
______________________________________________________________________________________
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
MAX5512-MAX5515
PACKAGE OUTLINE 12,16,20,24L QFN THIN, 4x4x0.8 mm
21-0139
B
1
2
______________________________________________________________________________________
24L QFN THIN.EPS
21
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs MAX5512-MAX5515
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
PACKAGE OUTLINE 12,16,20,24L QFN THIN, 4x4x0.8 mm
21-0139
B
2
2
22
______________________________________________________________________________________
Dual, Ultra-Low-Power, 8-Bit, Voltage-Output DACs
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)
8LUMAXD.EPS
MAX5512-MAX5515
8
4X S
8
INCHES DIM A A1 A2 b c D e E H MIN 0.002 0.030 MAX 0.043 0.006 0.037
MILLIMETERS MAX MIN 0.05 0.75 1.10 0.15 0.95
0.50-0.1
E
H
0.6-0.1
1
0.6-0.1
1
D
L
S
BOTTOM VIEW
0.014 0.010 0.007 0.005 0.120 0.116 0.0256 BSC 0.120 0.116 0.198 0.188 0.026 0.016 6 0 0.0207 BSC
0.25 0.36 0.13 0.18 2.95 3.05 0.65 BSC 2.95 3.05 5.03 4.78 0.41 0.66 0 6 0.5250 BSC
TOP VIEW
A2
A1
A
c e b L
SIDE VIEW
FRONT VIEW
PROPRIETARY INFORMATION TITLE:
PACKAGE OUTLINE, 8L uMAX/uSOP
APPROVAL DOCUMENT CONTROL NO. REV.
21-0036
J
1 1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 23 (c) 2004 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.


▲Up To Search▲   

 
Price & Availability of MAX5513EUA

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X